Phragmén-lindelöf Alternative for the Laplace Equation with Dynamic Boundary Conditions

نویسندگان

  • Mari Carme Leseduarte
  • Ramon Quintanilla
  • R. Quintanilla
چکیده

Abstract This paper investigates the spatial behavior of the solutions of the Laplace equation on a semi-infinite cylinder when dynamical nonlinear boundary conditions are imposed on the lateral side of the cylinder. We prove a Phragmén-Lindelöf alternative for the solutions. To be precise, we see that the solutions increase in an exponential way or they decay as a polynomial. To give a complete description of the decay in this last case we also obtain an upper bound for the amplitude term by means of the boundary conditions. In the last section we sketch how to generalize the results for the case of a system of two elliptic equations related with the heat conduction in mixtures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phragmén–lindelöf Theorem for Infinity Harmonic Functions

We investigate a version of the Phragmén–Lindelöf theorem for solutions of the equation ∆∞u = 0 in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the p-harmonic equation when p tends to ∞.

متن کامل

A Phragmén - Lindelöf principle for slice regular functions

The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary p...

متن کامل

Remarks on the Phragmén-lindelöf Theorem for L-viscosity Solutions of Fully Nonlinear Pdes with Unbounded Ingredients

The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully nonlinear second order elliptic partial differential equations with unbounded coefficients and inhomogeneous terms is established.

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017